17 research outputs found

    Π’Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠ΅ Ipomoea batatas (L.) Lam. Π² условиях ΡΠ²Π΅Ρ‚ΠΎΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ in vitro ΠΈ ex vitro

    Get PDF
    Relevance. Currently, food products that include prebiotics, in particular, inulin, are particularly popular. Interest in this substance is justified by its valuable properties – it is a good immunomodulator, cleanses the body of toxins, radionuclides, "bad" cholesterol, promotes the assimilation of useful trace elements necessary for human life. Inulin is contained in plants such as jerusalem artichoke, chicory, as well as in sweet potatoes, the popularity of which is increasing every year. However, sweet potato plants are afraid of cold and frost-resistant. Therefore, the creation of new varieties and hybrids that are resistant to low temperatures is an urgent problem. Cellular biotechnology is aimed at solving this problem using methods of clonal microreproduction, cell selection, somatic hybridization, etc. For rapid reproduction and obtaining high-quality planting material, biotechnology methods are used, in particular, clonal micro-propagation. However, in this technology there are difficulties associated with poor adaptation of microclones to ex vitro conditions. This fact introduces an additional requirement for the selection of optimal rooting modes in vitro and ex vitro adaptation of microclones.Material and methodology. The aim of the work was to study the influence of cultivation conditions on in vitro rooting and ex vitro adaptation of I. batatas (L.) microclones. The object of the study was sweet potato microgears propagated in vitro. I. batatas micro-gears were cultured in vitro on a Murashige-Skug medium, differing by the type of auxins. The influence of red (R) and far red (FR) light on the shoots rooting in vitro and the adaptation of microclones ex vitro was studied.Results. It has been experimentally established that the cultivation of micro-gears on a medium containing indolyl butyric acid at a concentration of 0.5-1 mg/l and under conditions of illumination by LED lamps of red and far red light in equal amounts leads to the production of microclones with a well-developed root system and vegetative biomass. The use of an aeroponic installation at the last stage of clonal micro-propagation makes it possible to obtain high-quality planting material that can adapt well to open ground conditions.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ. Π’ настоящСС врСмя особой ΠΏΠΎΠΏΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ‹ питания, Π² состав ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… входят ΠΏΡ€Π΅Π±ΠΈΠΎΡ‚ΠΈΠΊΠΈ, Π² частности, ΠΈΠ½ΡƒΠ»ΠΈΠ½. Π˜Π½Ρ‚Π΅Ρ€Π΅Ρ ΠΊ Π΄Π°Π½Π½ΠΎΠΌΡƒ вСщСству ΠΎΠΏΡ€Π°Π²Π΄Π°Π½ Π΅Π³ΠΎ Ρ†Π΅Π½Π½Ρ‹ΠΌΠΈ свойствами – ΠΎΠ½ являСтся Ρ…ΠΎΡ€ΠΎΡˆΠΈΠΌ иммуномодулятором, ΠΎΡ‡ΠΈΡ‰Π°Π΅Ρ‚ ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ ΠΎΡ‚ токсинов, Ρ€Π°Π΄ΠΈΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄ΠΎΠ², Β«ΠΏΠ»ΠΎΡ…ΠΎΠ³ΠΎΒ» холСстСрина, способствуСт ΡƒΡΠ²ΠΎΠ΅Π½ΠΈΡŽ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Ρ… микроэлСмСнтов, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… для ΠΆΠΈΠ·Π½Π΅Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°. Π˜Π½ΡƒΠ»ΠΈΠ½ содСрТится Π² Ρ‚Π°ΠΊΠΈΡ… растСниях, ΠΊΠ°ΠΊ Ρ‚ΠΎΠΏΠΈΠ½Π°ΠΌΠ±ΡƒΡ€, Ρ†ΠΈΠΊΠΎΡ€ΠΈΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Π±Π°Ρ‚Π°Ρ‚Π΅, ΠΏΠΎΠΏΡƒΠ»ΡΡ€Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ с ΠΊΠ°ΠΆΠ΄Ρ‹ΠΌ Π³ΠΎΠ΄ΠΎΠΌ возрастаСт. Однако растСния Π±Π°Ρ‚Π°Ρ‚Π° боятся Ρ…ΠΎΠ»ΠΎΠ΄Π° ΠΈ нСморозоустойчивы. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ созданиС Π½ΠΎΠ²Ρ‹Ρ… сортов ΠΈ Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΎΠ², ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‰ΠΈΡ… ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒΡŽ ΠΊ ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½Π½Ρ‹ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°ΠΌ являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΎΠΉ. ΠšΠ»Π΅Ρ‚ΠΎΡ‡Π½Π°Ρ биотСхнология Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° Π½Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² клонального микроразмноТСния, ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ сСлСкции, соматичСской Π³ΠΈΠ±Ρ€ΠΈΠ΄ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ Π΄Ρ€. Для быстрого размноТСния ΠΈ получСния высококачСствСнного посадочного ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, Π² частности, клональноС ΠΌΠΈΠΊΡ€ΠΎΡ€Π°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅. Однако Π² этой Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ трудности, связанныС с ΠΏΠ»ΠΎΡ…ΠΎΠΉ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠ΅ΠΉ ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΎΠ½ΠΎΠ² ΠΊ условиям ex vitro. Π­Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚ вносит Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊ ΠΏΠΎΠ΄Π±ΠΎΡ€Ρƒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² укорСнСния in vitro ΠΈ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ex vitro ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΎΠ½ΠΎΠ².ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ влияния условий ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ Π½Π° ΡƒΠΊΠΎΡ€Π΅Π½Π΅Π½ΠΈΠ΅ in vitro ΠΈ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΈ ex vitro ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΎΠ½ΠΎΠ² I. batatas (L.). ΠžΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠΌ исслСдования Π±Ρ‹Π»ΠΈ ΠΌΠΈΠΊΡ€ΠΎΡ‡Π΅Ρ€Π΅Π½ΠΊΠΈ Π±Π°Ρ‚Π°Ρ‚Π°, Ρ€Π°Π·ΠΌΠ½ΠΎΠΆΠ΅Π½Π½Ρ‹Π΅ in vitro. ΠœΠΈΠΊΡ€ΠΎΡ‡Π΅Ρ€Π΅Π½ΠΊΠΈ I. batatas ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ in vitro Π½Π° ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ срСдС, содСрТащСй ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ соли ΠΏΠΎ прописи ΠœΡƒΡ€Π°ΡΠΈΠ³Π° ΠΈ Π‘ΠΊΡƒΠ³Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ауксины. Π˜Π·ΡƒΡ‡Π°Π»ΠΈ влияниС красного (R) ΠΈ дальнСго красного (FR) свСта Π½Π° ΡƒΠΊΠΎΡ€Π΅Π½Π΅Π½ΠΈΠ΅ ΠΌΠΈΠΊΡ€ΠΎΠΏΠΎΠ±Π΅Π³ΠΎΠ² in vitro ΠΈ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΡŽ ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΎΠ½ΠΎΠ² ex vitro.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ установлСно, Ρ‡Ρ‚ΠΎ Π²Ρ‹Ρ€Π°Ρ‰ΠΈΠ²Π°Π½ΠΈΠ΅ ΠΌΠΈΠΊΡ€ΠΎΡ‡Π΅Ρ€Π΅Π½ΠΊΠΎΠ² Π½Π° ΠΏΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ срСдС, содСрТащСй ИМК Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 0,5-1 ΠΌΠ³/Π» ΠΈ Π² условиях освСщСния свСтодиодными Π»Π°ΠΌΠΏΠ°ΠΌΠΈ красного ΠΈ дальнСго красного свСта Π² Ρ€Π°Π²Π½ΠΎΠΌ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ, ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΌΠΈΠΊΡ€ΠΎΠΊΠ»ΠΎΠ½ΠΎΠ² с Ρ…ΠΎΡ€ΠΎΡˆΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΠΎΠΉ ΠΊΠΎΡ€Π½Π΅Π²ΠΎΠΉ систСмой ΠΈ Π½Π°Π΄Π·Π΅ΠΌΠ½ΠΎΠΉ биомассой. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ аэропонной установки Π½Π° послСднСм этапС клонального микроразмноТСния позволяСт ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ высококачСствСнный посадочный ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», способный Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΠΈΡ‚ΡŒ Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΡŽ ΠΊ условиям ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ Π³Ρ€ΡƒΠ½Ρ‚Π°

    Monitoring membrane viscosity in differentiating stem cells using BODIPY-based molecular rotors and FLIM

    No full text
    Membrane fluidity plays an important role in many cell functions such as cell adhesion, and migration. In stem cell lines membrane fluidity may play a role in differentiation. Here we report the use of viscosity-sensitive fluorophores based on a BODIPY core, termed β€œmolecular rotors”, in combination with Fluorescence Lifetime Imaging Microscopy, for monitoring of plasma membrane viscosity changes in mesenchymal stem cells (MSCs) during osteogenic and chondrogenic differentiation. In order to correlate the viscosity values with membrane lipid composition, the detailed analysis of the corresponding membrane lipid composition of differentiated cells was performed by time-of-flight secondary ion mass spectrometry. Our results directly demonstrate for the first time that differentiation of MSCs results in distinct membrane viscosities, that reflect the change in lipidome of the cells following differentiation
    corecore